A conserved mechanism for controlling the translation of beta-F1-ATPase mRNA between the fetal liver and cancer cells.
نویسندگان
چکیده
To characterize the mechanisms governing the biogenesis of mitochondria in cancer, we studied the mitochondrial phenotype and the mechanisms controlling the expression of the beta subunit of the mitochondrial H(+)-ATP synthase (beta-F1-ATPase) gene in the rat FAO and AS30D hepatomas. When compared with normal adult rat liver, the relative cellular content of the mitochondrial beta-F1-ATPase and glutamate dehydrogenase, as well as of mitochondrial DNA, was severely reduced in both cell lines. A paradoxical increase in the cellular abundance of beta-F1-ATPase mRNA was observed in cancer cells. Run-on transcription assays and the estimation of mRNA half-lives revealed that the increased abundance of beta-F1-ATPase mRNA results from the stabilization of the transcript in cancer. In vitro translation assays revealed a specific inhibition of the synthesis of the beta-precursor when translation reactions were carried out in the presence of extracts derived from cancer cells. The inhibitory effect was recapitulated using an RNA chimera that contained the 3'-untranslated region of beta-F1-ATPase mRNA. Hepatoma extracts also contained an increased activity of the developmentally regulated translation-inhibitory proteins that bind the 3'-untranslated region of beta-F1-ATPase mRNA. The results indicate that the expression of this gene in hepatoma cells is controlled by the same mechanisms that regulate its expression in the liver during fetal development.
منابع مشابه
miR-127-5p targets the 3'UTR of human β-F1-ATPase mRNA and inhibits its translation.
The mitochondrial H(+)-ATP synthase is a bottleneck component in the provision of metabolic energy by oxidative phosphorylation. The expression of its catalytic subunit (β-F1-ATPase) is stringently controlled at post-transcriptional levels during oncogenesis, the cell cycle and in development. Here we show that miR-127-5p targets the 3'UTR of β-F1-ATPase mRNA (β-mRNA) significantly reducing its...
متن کاملSelective inhibition of beta-F1-ATPase mRNA translation in human tumours.
Down-regulation of beta-F1-ATPase (the catalytic subunit of the mitochondrial H+-ATP synthase) is a hallmark of many human tumours. The expression level of beta-F1-ATPase provides a marker of the prognosis of cancer patients, as well as of the tumour response to chemotherapy. However, the mechanisms that participate in down-regulating its expression in human tumours remain unknown. In the prese...
متن کاملNonsense-mediated mRNA decay among coagulation factor genes
Objective(s): Haemostasis prevents blood loss following vascular injury. It depends on the unique concert of events involving platelets and specific blood proteins, known as coagulation factors. The clotting system requires precise regulation and coordinated reactions to maintain the integrity of the vasculature. Clotting insufficiency mostly occurs due to genetically inherited coagulation fact...
متن کاملBiogenesis and Dynamics of Mitochondria during the Cell Cycle: Significance of 3′UTRs
Nowadays, we are facing a renaissance of mitochondria in cancer biology. However, our knowledge of the basic cell biology and on the timing and mechanisms that control the biosynthesis of mitochondrial constituents during progression through the cell cycle of mammalian cells remain largely unknown. Herein, we document the in vivo changes on mitochondrial morphology and dynamics that accompany c...
متن کاملmRNA encoding the beta-subunit of the mitochondrial F1-ATPase complex is a localized mRNA in rat hepatocytes.
Subcellular mRNA localization has emerged as a mechanism for regulation of gene expression and protein-sorting pathways. Here we describe the different cytoplasmic presentation in rat hepatocytes of two nuclear mRNA species encoding subunits alpha and beta of the mitochondrial F1-ATPase complex. alpha-F1-ATPase mRNA is dispersed and scattered in the cytoplasm. In contrast, beta-F1-ATPase mRNA a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 275 10 شماره
صفحات -
تاریخ انتشار 2000